Efficient Estimation in Panel Data Partially Additive Linear Model with Serially Correlated Errors

نویسندگان

  • Jinhong You
  • Xian Zhou
  • XIAN ZHOU
چکیده

The partially linear additive model arises in many scientific endeavors. In this paper, we look at inference given panel data and a serially correlated error component structure. By combining polynomial spline series approximation with least squares and the estimation of correlation, we propose a weighted semiparametric least squares estimator (WSLSE) for the parametric components, and a weighted polynomial spline series estimator (WPSSE) for the nonparametric components. The WSLSE is shown to be asymptotically normal and more efficient than the unweighted one. In addition, based on the WSLSE and WPSSE, a two-stage local polynomial estimator (TSLLE) of the nonparametric components is proposed that takes both contemporaneous correlation and additive structure into account. The TSLLE has several advantages, including higher asymptotic efficiency and an oracle property that achieves the same asymptotic distribution of each additive component as if the parametric and other nonparametric components were known with certainty. Some simulation studies were conducted to illustrate the finite sample performance of the proposed procedure. An example of application to a set of panel data from a wage study is illustrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum likelihood estimation of spatially and serially correlated panels with random effects

An estimation framework and a user-friendly software implementation are described for maximum likelihood estimation of panel data models with random effects, a spatially lagged dependent variable and spatially and serially correlated errors. This specification extends static panel data models in the direction of serial error correlation, allowing richer modelling possibilities and more thorough...

متن کامل

Efficient Semiparametric Marginal Estimation for the Partially Linear Additive Model for Longitudinal/Clustered Data.

We consider the efficient estimation of a regression parameter in a partially linear additive nonparametric regression model from repeated measures data when the covariates are multivariate. To date, while there is some literature in the scalar covariate case, the problem has not been addressed in the multivariate additive model case. Ours represents a first contribution in this direction. As p...

متن کامل

Estimation of Linear Models with Anonymised Panel Data∗

We analyse the effect of the anonymisation method multiplicative stochastic noise on the within estimation of a linear panel model. In particular, we concentrate on the panel model with serially correlated regressors. In addition to anonymisation as such, the serial correlation in a data set with only few points in time increases the bias of the within estimator and therefore must be taken into...

متن کامل

Dynamic Panel Probit Models for Current Account Reversals and their Efficient Estimation

We use panel probit models with unobserved heterogeneity and serially correlated errors in order to analyze the determinants and the dynamics of current-account reversals for a panel of developing and emerging countries. The likelihood evaluation of these models requires high-dimensional integration for which we use a generic procedure known as Efficient Importance Sampling (EIS). Our empirical...

متن کامل

Bootstrap of a Semiparametric Partially Linear Model with Autoregressive Errors

This paper is concerned with a semiparametric partially linear regression model with unknown regression coefficients, an unknown nonparametric function for the non-linear component, and unobservable serially correlated random errors. The random errors are modeled by an autoregressive time series. We show that the distributions of the feasible semiparametric generalized least squares estimator o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012